Abstract

We propose an efficient non-incremental approach to evaluate the boundary of constructive solid geometry (CSG) in this paper. In existing CSG evaluation methods, the face membership classification is a bottleneck in executive efficiency. To increase the executive speed, we take advantages of local coherence of space labels to accelerate the classification process. We designed a two-level grouping scheme to group faces that share specific space labels to reduce redundant computation. To further enhance the performance of our approach in the non-incremental evaluation, we optimize our model generation which can produce the results in one-shot without performing a step-by-step evaluation of the Boolean operations. The robustness of our approach is strengthened by the plane-based geometry embedded in the intersection computation. Various experiments in comparison with state-of-the-art techniques have shown that our approach outperforms previous methods in boundary evaluation of both trivial and complicated CSG with massive faces while maintaining high robustness.

Description

Efficient non-incremental constructive solid geometry evaluation for triangular meshes - ScienceDirect

Links and resources

Tags

community

  • @achakraborty
  • @dblp
@achakraborty's tags highlighted