Аннотация
Our main goal in this paper is to construct the first explicit fundamental
domain of the Picard modular group acting on the complex hyperbolic space $\bf
CH^2$. The complex hyperbolic space is a Hermitian symmetric space, its
bounded realization is the unit ball in $C^2$ equipped with the Bergman
metric. The Picard modular group is a discontinuous holomorphic automorphism
subgroup of $SU(2,1)$ with Gaussian integer entries. This fundamental domain
has finite volume, one cusp, explicitly given boundary surfaces and an
interesting symmetry.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)