Misc,

Gravity and the Quantum Vacuum Inertia Hypothesis. I. Formalized Groundwork for Extension to Gravity

, , and .
(August 2001)

Abstract

It has been shown 1,2 that the electromagnetic quantum vacuum makes a contribution to the inertial mass, $m_i$, in the sense that at least part of the inertial force of opposition to acceleration, or inertia reaction force, springs from the electromagnetic quantum vacuum. As experienced in a Rindler constant acceleration frame the electromagnetic quantum vacuum mainfests an energy-momentum flux which we call the Rindler flux (RF). The RF, and its relative, Unruh-Davies radiation, both stem from event-horizon effects in accelerating reference frames. The force of radiation pressure produced by the RF proves to be proportional to the acceleration of the reference frame, which leads to the hypothesis that at least part of the inertia of an object should be due to the interaction of its quarks and electrons with the RF. We demonstrate that this quantum vacuum inertia hypothesis is consistent with general relativity (GR) and that it answers a fundamental question left open within GR, viz. is there a physical mechanism that generates the reaction force known as weight when a specific non-geodesic motion is imposed on an object? The quantum vacuum inertia hypothesis provides such a mechanism, since by assuming the Einstein principle of local Lorentz-invariance (LLI), we can immediately show that the same RF arises due to curved spacetime geometry as for acceleration in flat spactime. Thus the previously derived expression for the inertial mass contribution from the electromagnetic quantum vacuum field is exactly equal to the corresponding contribution to the gravitational mass, $m_g$. Therefore, within the electromagnetic quantum vacuum viewpoint proposed in 1,2, the Newtonian weak equivalence principle, $m_i=m_g$, ensues in a straightforward manner.

Tags

Users

  • @a_olympia

Comments and Reviews