Аннотация
For an essentially small hereditary abelian category $A$, we define
a new kind of algebra $H_\Delta(A)$, called the
$\Delta$-Hall algebra of $A$. The basis of
$H_\Delta(A)$ is the isomorphism classes of objects in
$A$, and the $\Delta$-Hall numbers calculate certain three-cycles of
exact sequences in $A$. We show that the $\Delta$-Hall algebra
$H_\Delta(A)$ is isomorphic to the 1-periodic derived
Hall algebra of $A$. By taking suitable extension and twisting, we
can obtain the $ımath$Hall algebra and the semi-derived Hall algebra
associated to $A$ respectively.
When applied to the the nilpotent representation category $A=\rm
rep^nil(k Q)$ for an arbitrary quiver $Q$ without loops, the
(resp. extended) $\Delta$-Hall algebra provides a new realization of the
(resp. universal) $ımath$quantum group associated to $Q$.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)