Abstract
The goal of text ranking is to generate an ordered list of texts retrieved
from a corpus in response to a query. Although the most common formulation of
text ranking is search, instances of the task can also be found in many natural
language processing applications. This survey provides an overview of text
ranking with neural network architectures known as transformers, of which BERT
is the best-known example. The combination of transformers and self-supervised
pretraining has been responsible for a paradigm shift in natural language
processing (NLP), information retrieval (IR), and beyond. In this survey, we
provide a synthesis of existing work as a single point of entry for
practitioners who wish to gain a better understanding of how to apply
transformers to text ranking problems and researchers who wish to pursue work
in this area. We cover a wide range of modern techniques, grouped into two
high-level categories: transformer models that perform reranking in multi-stage
architectures and dense retrieval techniques that perform ranking directly.
There are two themes that pervade our survey: techniques for handling long
documents, beyond typical sentence-by-sentence processing in NLP, and
techniques for addressing the tradeoff between effectiveness (i.e., result
quality) and efficiency (e.g., query latency, model and index size). Although
transformer architectures and pretraining techniques are recent innovations,
many aspects of how they are applied to text ranking are relatively well
understood and represent mature techniques. However, there remain many open
research questions, and thus in addition to laying out the foundations of
pretrained transformers for text ranking, this survey also attempts to
prognosticate where the field is heading.
Users
Please
log in to take part in the discussion (add own reviews or comments).