Article,

Quantitative Genetic Analysis of Multivariate Evolution, Applied to Brain: Body Size Allometry

.
Evolution, 33 (1): pp. 402-416 (1979)

Abstract

A basic principle of natural selection on correlated characters is expressed as an adaptive topography for the vector of mean phenotypes in a population. Under some simple conditions on the pattern of phenotypic and genetic covariation within populations, selection only on body size, certain types of multivariate selection, and random genetic drift in a stochastic phylogeny are each expected to produce allometric evolution, i.e., straight lines or linear regressions on logarithmic coordinates. The orientation of these lines is determined by genetic parameters of the populations. Using this theory, phylogenetic or comparative information can be combined with experimental data on population genetic parameters to test hypotheses about past selective forces. Data from selection experiments on brain and body weights in mice support the conclusions that 1 the short-term differentiation of brain and body sizes in very closely related mammalian forms resulted either from directional selection mostly on body size with changes in brain sizes largely a genetically correlated response, or from random genetic drift; 2 during the long-term allometric diversification within most mammalian orders there has been more net directional selection on brain sizes than on body sizes. It is suggested that encephalization in primates decreased the genetic correlation between brain size and body size within populations, which facilitated further encephalization in the human lineage by avoiding antagonistic selection on brain and body sizes. The evolution of brain:body ontogeny is briefly discussed.

Tags

Users

  • @peter.ralph

Comments and Reviews