Abstract

Tropical cyclones generated in the North Atlantic and the Eastern Pacific are a constant hazard for Mexico. Along with a possible increased hazard of tropical cyclones due to global warming, there is an inescapable increase in vulnerability and disaster risk towards tropical cyclones due to population growth and coastal infrastructure developments. In Mexico, the Yucatan Peninsula has the highest landfall rates of major category hurricanes in addition to the highest rate of population growth in major tourist cities. Therefore, the assessment of landfalling tropical cyclones is of paramount importance for emergency management and planning. This paper provides an assessment of the future climate for landfalling tropical cyclones in the Yucatan Peninsula, based on synthetic tropical cyclones driven by atmospheric models (reanalysis and six different general circulation models (GCMs)) and under the Representative Concentration Pathway 8.5 climate change scenario. The results using the ensemble mean from the GCMs show that the Yucatan Peninsula will be more susceptible to more frequent intense hurricanes and more regular events undergoing rapid intensification. We conclude that even under the uncertainty imposed by the results, it is more likely than not that the future climate will bring more extreme events to this area. Therefore, it becomes imperative to implement strategic planning based on the characterization of tropical cyclone hazards framed within the assessment of global warming effects. © 2019, Springer Nature B.V.

Links and resources

Tags