Article,

Polynomial genetic programming for response surface modeling Part 2: adaptive approximate models with probabilistic optimization problems

, , , and .
Structural and Multidisciplinary Optimization, 29 (1): 35--49 (January 2005)
DOI: doi:10.1007/s00158-004-0461-5

Abstract

This is the second in a series of papers. The first deals with polynomial genetic programming (PGP) adopting the directional derivative-based smoothing (DDBS) method, while in this paper, an adaptive approximate model (AAM) based on PGP is presented with the partial interpolation strategy (PIS). The AAM is sequentially modified in such a way that the quality of fitting in the region of interest where an optimum point may exist can be gradually enhanced, and accordingly the size of the learning set is gradually enlarged. If the AAM uses a smooth high-order polynomial with an interpolative capability, it becomes more and more difficult for PGP to obtain smooth polynomials, whose size should be larger than or equal to the number of the samples, because the order of the polynomial becomes unnecessarily high according to the increase in its size. The PIS can avoid this problem by selecting samples belonging to the region of interest and interpolating only those samples. Other samples are treated as elements of the extended data set (EDS). Also, the PGP system adopts a multiple-population approach in order to simultaneously handle several constraints. The PGP system with the variable-fidelity response surface method is applied to reliability-based optimization (RBO) problems in order to significantly cut the high computational cost of RBO. The AAMs based on PGP are responsible for fitting probabilistic constraints and the cost function while the variable-fidelity response surface method is responsible for fitting limit state equations. Three numerical examples are presented to show the performance of the AAM based on PGP.

Tags

Users

  • @brazovayeye

Comments and Reviews