Abstract
The microscopic and macroscopic dynamics of random networks is investigated in the strong-dilution limit (i.e., for sparse networks). By simulating chaotic maps, Stuart-Landau oscillators, and leaky integrate-and-fire neurons, we show that a finite connectivity (of the order of a few tens) is able to sustain a nontrivial collective dynamics even in the thermodynamic limit. Although the network structure implies a nonadditive dynamics, the microscopic evolution is extensive (i.e., the number of active degrees of freedom is proportional to the number of network elements).
Users
Please
log in to take part in the discussion (add own reviews or comments).