Аннотация
The challenge in privacy-preserving data mining is
avoiding the invasion of personal data privacy. Secure computa-
tion provides a solution to this problem. With the development of
this technique, fully homomorphic encryption has been realized
after decades of research; this encryption enables the computing
and obtaining results via encrypted data without accessing any
plaintext or private key information. In this paper, we propose
a privacy-preserving clustering using representatives (CURE)
algorithm over arbitrarily partitioned data using fully homomor-
phic encryption. Our privacy-preserving CURE algorithm allows
cooperative computation without revealing users’ individual data.
The method used in our algorithm enables the data to be
arbitrarily distributed among different parties and to receive
accurate clustering result simultaneously.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)