Zusammenfassung
In this paper we perform an analytical and numerical study of Extreme Value
distributions in discrete dynamical systems. In this setting, recent works have
shown how to get a statistics of extremes in agreement with the classical
Extreme Value Theory. We pursue these investigations by giving analytical
expressions of Extreme Value distribution parameters for maps that have an
absolutely continuous invariant measure. We compare these analytical results
with numerical experiments in which we study the convergence to limiting
distributions using the so called block-maxima approach, pointing out in which
cases we obtain robust estimation of parameters. In regular maps for which
mixing properties do not hold, we show that the fitting procedure to the
classical Extreme Value Distribution fails, as expected. However, we obtain an
empirical distribution that can be explained starting from a different
observable function for which Nicolis et al. 2006 have found analytical
results.
Nutzer