Please log in to take part in the discussion (add own reviews or comments).
Cite this publication
More citation styles
- please select -
%0 Journal Article
%1 journals/remotesensing/TianLZZJ24
%A Tian, Xin
%A Li, Jiejie
%A Zhang, Fanyi
%A Zhang, Haibo
%A Jiang, Mi
%D 2024
%J Remote. Sens.
%K dblp
%N 6
%P 1074
%T Forest Aboveground Biomass Estimation Using Multisource Remote Sensing Data and Deep Learning Algorithms: A Case Study over Hangzhou Area in China.
%U http://dblp.uni-trier.de/db/journals/remotesensing/remotesensing16.html#TianLZZJ24
%V 16
@article{journals/remotesensing/TianLZZJ24,
added-at = {2024-10-06T00:00:00.000+0200},
author = {Tian, Xin and Li, Jiejie and Zhang, Fanyi and Zhang, Haibo and Jiang, Mi},
biburl = {https://www.bibsonomy.org/bibtex/2fee7da34b973895f4ebe108fdb3b97de/dblp},
ee = {https://doi.org/10.3390/rs16061074},
interhash = {104a7406930df3eb44e81fad520da0ad},
intrahash = {fee7da34b973895f4ebe108fdb3b97de},
journal = {Remote. Sens.},
keywords = {dblp},
month = {March},
number = 6,
pages = 1074,
timestamp = {2024-10-07T07:08:01.000+0200},
title = {Forest Aboveground Biomass Estimation Using Multisource Remote Sensing Data and Deep Learning Algorithms: A Case Study over Hangzhou Area in China.},
url = {http://dblp.uni-trier.de/db/journals/remotesensing/remotesensing16.html#TianLZZJ24},
volume = 16,
year = 2024
}