Abstract
Motivated by the need to replace plaster casts or image acquisition approaches to capture body shapes to create orthoses, we explored the feasibility of using smart textile sleeve enhanced with arrays of stretch and bend sensors. The sensors' data is interpreted by an ad-hoc optimisation-based shape inference algorithm to come up with a digitised 3D model of the body part around which the sleeve is worn. This paper summarises the state of the art in the field, before illustrating the approach we followed and lesson's learned in developing smart textile sleeves and the associated data processing algorithms. The unique approach we followed was to realise from the ground up the sensing elements, their integration into a textile, and the associated data processing. In the process, we developed a technology to create stretch and bend sensing elements using carbon black and ecoflex, improving curvature detection; we also found ways to interconnect large arrays of such sensors, digitise their data, and developed several mathematical optimisation models for the inference of the sleeve shape from the sensor readings.
Users
Please
log in to take part in the discussion (add own reviews or comments).