Zusammenfassung
We examine galaxy formation in a cosmological AMR simulation, which includes
two high resolution boxes, one centered on a 3 10^14 Mcluster, and
one centered on a void. We examine the evolution of 611 massive (M>
10^10Mødot) galaxies. We find that the fraction of the final stellar mass
which is accreted from other galaxies is between 15 and 40% and increases with
stellar mass. The accreted fraction does not depend strongly on environment at
a given stellar mass, but the galaxies in groups and cluster environments are
older and underwent mergers earlier than galaxies in lower density
environments. On average, the accreted stars are ~2.5 Gyrs older, and ~0.15 dex
more metal poor than the stars formed in-situ. Accreted stellar material
typically lies on the outskirts of galaxies; the average half-light radius of
the accreted stars is 2.6 times larger than that of the in-situ stars. This
leads to radial gradients in age and metallicity for massive galaxies, in
qualitative agreement with observations. Massive galaxies grow by mergers at a
rate of approximately 2.6% per Gyr. These mergers have a median (mass-weighted)
mass ratio less than 0.26 0.21, with an absolute lower limit of 0.20, for
galaxies with M~ 10^12 Mødot. This suggests that major mergers do not
dominate in the accretion history of massive galaxies. All of these results
agree qualitatively with results from SPH simulations by Oser et al. (2010,
2012).
Nutzer