Efficiency and Redundancy in Deep Learning Models: Theoretical Considerations and Practical Applications. (Efficience et redondance dans les modèles d'apprentissage profond : considérations théoriques et applications pratiques).
P. Stock. École normale supérieure de Lyon, France, (2021)
Please log in to take part in the discussion (add own reviews or comments).
Cite this publication
More citation styles
- please select -
%0 Thesis
%1 phd/hal/Stock21
%A Stock, Pierre
%D 2021
%K dblp
%T Efficiency and Redundancy in Deep Learning Models: Theoretical Considerations and Practical Applications. (Efficience et redondance dans les modèles d'apprentissage profond : considérations théoriques et applications pratiques).
@phdthesis{phd/hal/Stock21,
added-at = {2021-05-25T00:00:00.000+0200},
author = {Stock, Pierre},
biburl = {https://www.bibsonomy.org/bibtex/2c224da11a9202f11fd0a415044c4ea18/dblp},
ee = {https://tel.archives-ouvertes.fr/tel-03208517},
interhash = {4072ad84defee4bd1f67f30c160567f1},
intrahash = {c224da11a9202f11fd0a415044c4ea18},
keywords = {dblp},
school = {École normale supérieure de Lyon, France},
timestamp = {2024-04-09T09:06:32.000+0200},
title = {Efficiency and Redundancy in Deep Learning Models: Theoretical Considerations and Practical Applications. (Efficience et redondance dans les modèles d'apprentissage profond : considérations théoriques et applications pratiques).},
year = 2021
}