Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using Artificial Neural Networks
D. Abraham. International Journal of Trend in Scientific Research and Development, 4 (2):
1119-1123(Februar 2020)
Zusammenfassung
This study proposes Artificial Neural Network ANN based field strength prediction models for the rural areas of Abuja, the federal capital territory of Nigeria. The ANN based models were created on bases of the Generalized Regression Neural network GRNN and the Multi Layer Perceptron Neural Network MLP NN . These networks were created, trained and tested for field strength prediction using received power data recorded at 900MHz from multiple Base Transceiver Stations BTSs distributed across the rural areas. Results indicate that the GRNN and MLP NN based models with Root Mean Squared Error RMSE values of 4.78dBm and 5.56dBm respectively, offer significant improvement over the empirical Hata Okumura counterpart, which overestimates the signal strength by an RMSE value of 20.17dBm. Deme C. Abraham ""Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using Artificial Neural Networks"" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-2 , February 2020, URL: https://www.ijtsrd.com/papers/ijtsrd30228.pdf
Paper Url : https://www.ijtsrd.com/computer-science/artificial-intelligence/30228/mobile-network-coverage-determination-at-900mhz-for-abuja-rural-areas-using-artificial-neural-networks/deme-c-abraham
%0 Journal Article
%1 noauthororeditor
%A Abraham, Deme C.
%D 2020
%J International Journal of Trend in Scientific Research and Development
%K Artificial Field Generalized Hata-Okumura Intelligence Multi-Layer Network Neural Perceptron Regression Strength
%N 2
%P 1119-1123
%T Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using Artificial Neural Networks
%U https://www.ijtsrd.com/computer-science/artificial-intelligence/30228/mobile-network-coverage-determination-at-900mhz-for-abuja-rural-areas-using-artificial-neural-networks/deme-c-abraham
%V 4
%X This study proposes Artificial Neural Network ANN based field strength prediction models for the rural areas of Abuja, the federal capital territory of Nigeria. The ANN based models were created on bases of the Generalized Regression Neural network GRNN and the Multi Layer Perceptron Neural Network MLP NN . These networks were created, trained and tested for field strength prediction using received power data recorded at 900MHz from multiple Base Transceiver Stations BTSs distributed across the rural areas. Results indicate that the GRNN and MLP NN based models with Root Mean Squared Error RMSE values of 4.78dBm and 5.56dBm respectively, offer significant improvement over the empirical Hata Okumura counterpart, which overestimates the signal strength by an RMSE value of 20.17dBm. Deme C. Abraham ""Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using Artificial Neural Networks"" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-2 , February 2020, URL: https://www.ijtsrd.com/papers/ijtsrd30228.pdf
Paper Url : https://www.ijtsrd.com/computer-science/artificial-intelligence/30228/mobile-network-coverage-determination-at-900mhz-for-abuja-rural-areas-using-artificial-neural-networks/deme-c-abraham
@article{noauthororeditor,
abstract = {This study proposes Artificial Neural Network ANN based field strength prediction models for the rural areas of Abuja, the federal capital territory of Nigeria. The ANN based models were created on bases of the Generalized Regression Neural network GRNN and the Multi Layer Perceptron Neural Network MLP NN . These networks were created, trained and tested for field strength prediction using received power data recorded at 900MHz from multiple Base Transceiver Stations BTSs distributed across the rural areas. Results indicate that the GRNN and MLP NN based models with Root Mean Squared Error RMSE values of 4.78dBm and 5.56dBm respectively, offer significant improvement over the empirical Hata Okumura counterpart, which overestimates the signal strength by an RMSE value of 20.17dBm. Deme C. Abraham ""Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using Artificial Neural Networks"" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-2 , February 2020, URL: https://www.ijtsrd.com/papers/ijtsrd30228.pdf
Paper Url : https://www.ijtsrd.com/computer-science/artificial-intelligence/30228/mobile-network-coverage-determination-at-900mhz-for-abuja-rural-areas-using-artificial-neural-networks/deme-c-abraham
},
added-at = {2020-05-14T11:11:23.000+0200},
author = {Abraham, Deme C.},
biburl = {https://www.bibsonomy.org/bibtex/2ee2293f237b78370c02efa6d60a8ccc6/ijtsrd},
interhash = {410f5ef2d19e4f2e4986c97fbe5d2192},
intrahash = {ee2293f237b78370c02efa6d60a8ccc6},
issn = {2456-6470},
journal = {International Journal of Trend in Scientific Research and Development},
keywords = {Artificial Field Generalized Hata-Okumura Intelligence Multi-Layer Network Neural Perceptron Regression Strength},
language = {English},
month = feb,
number = 2,
pages = {1119-1123},
timestamp = {2020-05-14T11:11:23.000+0200},
title = {Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using Artificial Neural Networks
},
url = {https://www.ijtsrd.com/computer-science/artificial-intelligence/30228/mobile-network-coverage-determination-at-900mhz-for-abuja-rural-areas-using-artificial-neural-networks/deme-c-abraham},
volume = 4,
year = 2020
}