Abstract
After completion of the Arabidopsis genome-sequencing programme, crown galls induced by Agrobacterium tumefaciens may become a model system to study plant tumour development. The molecular mechanisms of nutrient supply to support tumour growth and development are still unknown. In this study, we have identified a unique profile of Shaker -like potassium channels in agrobacteria-induced Arabidopsis tumours. Comparing the gene expression pattern of rapidly growing tumours with that of non-infected tissues, we found the suppression of shoot in favour of root-specific K+ channels. Among these, the upregulation of AKT1 and AtKC1 and the suppression of AKT2/3 and GORK were most pronounced. As a consequence, K+ uptake and accumulation were elevated in the tumour (163 mm) compared to control tissues (92 mm). Patch clamp studies on tumour protoplasts identified a population expressing the electrical properties of the AKT1 K+ channel. Furthermore, plants lacking a functional AKT1 or the AKT2/3 phloem K+ channel gene did not support tumour growth. This indicates that the delivery of potassium by AKT1 and the direction of assimilates, triggered by AKT2/3, are essential for tumour growth.
Users
Please
log in to take part in the discussion (add own reviews or comments).