We introduce a new deterministic collision rule for lattice-gas (cellular-automaton) hydrodynamics that yields immiscible two-phase flow. The rule is based on a minimization principle and the conservation of mass, momentum, and particle type. A numerical example demonstrates the spontaneous separation of two phases in two dimensions. Numerical studies show that the surface tension coefficient obeys Laplace's formula.
Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.
Zitieren Sie diese Publikation
Mehr Zitationsstile
- bitte auswählen -
%0 Journal Article
%1 rothman1988immiscible
%A Rothman, Daniel H.
%A Keller, Jeffrey M.
%D 1988
%J Journal of Statistical Physics
%K 68q80-cellular-automata 76d05-incompressible-navier-stokes-equations 76m28-particle-methods-and-lattice-gas-methods-in-fluid-mechanics 82-04-statistical-mechanics-software-source-code 82-08-statistical-mechanics-structure-of-matter-computational-methods
%N 3
%P 1119--1127
%R 10.1007/BF01019743
%T Immiscible cellular-automaton fluids
%U /brokenurl#10.1007/BF01019743
%V 52
%X We introduce a new deterministic collision rule for lattice-gas (cellular-automaton) hydrodynamics that yields immiscible two-phase flow. The rule is based on a minimization principle and the conservation of mass, momentum, and particle type. A numerical example demonstrates the spontaneous separation of two phases in two dimensions. Numerical studies show that the surface tension coefficient obeys Laplace's formula.
@article{rothman1988immiscible,
abstract = {We introduce a new deterministic collision rule for lattice-gas (cellular-automaton) hydrodynamics that yields immiscible two-phase flow. The rule is based on a minimization principle and the conservation of mass, momentum, and particle type. A numerical example demonstrates the spontaneous separation of two phases in two dimensions. Numerical studies show that the surface tension coefficient obeys Laplace's formula.},
added-at = {2023-05-11T06:27:19.000+0200},
author = {Rothman, Daniel H. and Keller, Jeffrey M.},
biburl = {https://www.bibsonomy.org/bibtex/26402ee03e7d0adc8acf64607922e52fc/gdmcbain},
day = 01,
doi = {10.1007/BF01019743},
interhash = {4530e25444990f99eb2da16fd8c7fba3},
intrahash = {6402ee03e7d0adc8acf64607922e52fc},
issn = {1572-9613},
journal = {Journal of Statistical Physics},
keywords = {68q80-cellular-automata 76d05-incompressible-navier-stokes-equations 76m28-particle-methods-and-lattice-gas-methods-in-fluid-mechanics 82-04-statistical-mechanics-software-source-code 82-08-statistical-mechanics-structure-of-matter-computational-methods},
month = aug,
number = 3,
pages = {1119--1127},
timestamp = {2023-05-11T06:27:19.000+0200},
title = {Immiscible cellular-automaton fluids},
url = {/brokenurl#10.1007/BF01019743},
volume = 52,
year = 1988
}