Beliebiger Eintrag,

A guide to convolution arithmetic for deep learning

, und .
(2016)cite arxiv:1603.07285.

Zusammenfassung

We introduce a guide to help deep learning practitioners understand and manipulate convolutional neural network architectures. The guide clarifies the relationship between various properties (input shape, kernel shape, zero padding, strides and output shape) of convolutional, pooling and transposed convolutional layers, as well as the relationship between convolutional and transposed convolutional layers. Relationships are derived for various cases, and are illustrated in order to make them intuitive.

Tags

Nutzer

  • @philipphaas
  • @bechr7
  • @ariane.mueller
  • @annakrause
  • @analyst
  • @pixor

Kommentare und Rezensionenanzeigen / verbergen

  • @ariane.mueller
    @ariane.mueller vor 2 Jahren
    Used for basics section on convolutions
  • @philipphaas
    @philipphaas vor 4 Jahren
    not enough space in my paper
Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.