Zusammenfassung
Traditional fact checking by expert journalists cannot keep up with the
enormous volume of information that is now generated online. Computational fact
checking may significantly enhance our ability to evaluate the veracity of
dubious information. Here we show that the complexities of human fact checking
can be approximated quite well by finding the shortest path between concept
nodes under properly defined semantic proximity metrics on knowledge graphs.
Framed as a network problem this approach is feasible with efficient
computational techniques. We evaluate this approach by examining tens of
thousands of claims related to history, entertainment, geography, and
biographical information using a public knowledge graph extracted from
Wikipedia. Statements independently known to be true consistently receive
higher support via our method than do false ones. These findings represent a
significant step toward scalable computational fact-checking methods that may
one day mitigate the spread of harmful misinformation.
Nutzer