Climate Downscaling Using YNet: A Deep Convolutional Network with Skip Connections and Fusion
Y. Liu, A. Ganguly, and J. Dy. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, page 3145–3153. New York, NY, USA, ACM, (2020)
DOI: 10.1145/3394486.3403366
Please log in to take part in the discussion (add own reviews or comments).
Cite this publication
More citation styles
- please select -
%0 Conference Paper
%1 yumin2020climate
%A Liu, Yumin
%A Ganguly, Auroop R.
%A Dy, Jennifer
%B Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
%C New York, NY, USA
%D 2020
%I ACM
%K climate deep downscaling, networks neural resolution, super
%P 3145–3153
%R 10.1145/3394486.3403366
%T Climate Downscaling Using YNet: A Deep Convolutional Network with Skip Connections and Fusion
%U https://doi.org/10.1145/3394486.3403366
%@ 9781450379984
@inproceedings{yumin2020climate,
added-at = {2022-01-19T10:43:42.000+0100},
address = {New York, NY, USA},
author = {Liu, Yumin and Ganguly, Auroop R. and Dy, Jennifer},
biburl = {https://www.bibsonomy.org/bibtex/29397d0c18c2bab8bd4216b5060582da3/msteininger},
booktitle = {Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
doi = {10.1145/3394486.3403366},
interhash = {49404966858058722977428e82c0388b},
intrahash = {9397d0c18c2bab8bd4216b5060582da3},
isbn = {9781450379984},
keywords = {climate deep downscaling, networks neural resolution, super},
location = {Virtual Event, CA, USA},
numpages = {9},
pages = {3145–3153},
publisher = {ACM},
series = {KDD '20},
timestamp = {2022-01-19T10:43:42.000+0100},
title = {Climate Downscaling Using YNet: A Deep Convolutional Network with Skip Connections and Fusion},
url = {https://doi.org/10.1145/3394486.3403366},
year = 2020
}