Abstract
Cesium (Cs) metal halide perovskites for photovoltaics have gained research interest due to their better thermal stability compared to their organic–inorganic counterparts. However, demonstration of highly efficient Cs-based perovskite solar cells requires high annealing temperature, which limits their use in multijunction devices. In this work, low-temperature-processed cesium lead (Pb) halide perovskite solar cells are demonstrated. We have also successfully incorporated the less toxic strontium (Sr) at a low concentration that partially substitutes Pb in CsPb1–xSrxI2Br. The crystallinity, morphology, absorption, photoluminescence, and elemental composition of this low-temperature-processed CsPb1–xSrxI2Br are studied. It is found that the surface of the perovskite film is enriched with Sr, providing a passivating effect. At the optimal concentration (x = 0.02), a mesoscopic perovskite solar cell using CsPb0.98Sr0.02I2Br achieves a stabilized efficiency at 10.8\%. This work shows the potential of inorganic perovskite, stimulating further development of this material.
Users
Please
log in to take part in the discussion (add own reviews or comments).