Аннотация
In this work, we study 3D object detection from RGB-D data in both indoor and
outdoor scenes. While previous methods focus on images or 3D voxels, often
obscuring natural 3D patterns and invariances of 3D data, we directly operate
on raw point clouds by popping up RGB-D scans. However, a key challenge of this
approach is how to efficiently localize objects in point clouds of large-scale
scenes (region proposal). Instead of solely relying on 3D proposals, our method
leverages both mature 2D object detectors and advanced 3D deep learning for
object localization, achieving efficiency as well as high recall for even small
objects. Benefited from learning directly in raw point clouds, our method is
also able to precisely estimate 3D bounding boxes even under strong occlusion
or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection
benchmarks, our method outperforms the state of the art by remarkable margins
while having real-time capability.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)