Abstract
We propose an experimental scheme to simulate and detect the properties of
time-reversal invariant topological insulators, using cold atoms trapped in
one-dimensional bichromatic optical lattices. This system is described by a
one-dimensional Aubry-Andre model with an additional SU(2) gauge structure,
which captures the essential properties of a two-dimensional Z2 topological
insulator. We demonstrate that topologically protected edge states, with
opposite spin orientations, can be pumped across the lattice by sweeping a
laser phase adiabatically. This process constitutes an elegant way to transfer
topologically protected quantum states in a highly controllable environment. We
discuss how density measurements could provide clear signatures of the
topological phases emanating from our one-dimensional system.
Users
Please
log in to take part in the discussion (add own reviews or comments).