Аннотация
The potential for machine learning (ML) systems to amplify social inequities
and unfairness is receiving increasing popular and academic attention. A surge
of recent work has focused on the development of algorithmic tools to assess
and mitigate such unfairness. If these tools are to have a positive impact on
industry practice, however, it is crucial that their design be informed by an
understanding of real-world needs. Through 35 semi-structured interviews and an
anonymous survey of 267 ML practitioners, we conduct the first systematic
investigation of commercial product teams' challenges and needs for support in
developing fairer ML systems. We identify areas of alignment and disconnect
between the challenges faced by industry practitioners and solutions proposed
in the fair ML research literature. Based on these findings, we highlight
directions for future ML and HCI research that will better address industry
practitioners' needs.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)