Article,

Graph Theory and the Evolution of Autocatalytic Networks

, and .
(October 2002)

Abstract

We give a self-contained introduction to the theory of directed graphs, leading up to the relationship between the Perron-Frobenius eigenvectors of a graph and its autocatalytic sets. Then we discuss a particular dynamical system on a fixed but arbitrary graph, that describes the population dynamics of species whose interactions are determined by the graph. The attractors of this dynamical system are described as a function of graph topology. Finally we consider a dynamical system in which the graph of interactions of the species coevolves with the populations of the species. We show that this system exhibits complex dynamics including self-organization of the network by autocatalytic sets, growth of complexity and structure, and collapse of the network followed by recoveries. We argue that a graph theoretic classification of perturbations of the network is helpful in predicting the future impact of a perturbation over short and medium time scales.

Tags

Users

  • @pietrosperoni

Comments and Reviews