Аннотация
Generalized graphs represent Hückel-type and Möbius-type polycyclic conjugated systems. We show that the number of generalized graphs with different spectra for a given parent graph is not larger than 2N(R) and is equal to 2N(R) if no two rings are equivalent,N(R) being the number of rings (fundamental circuits) in the parent graph. We demonstrate that the rule for the stability of generalized graphs, proved in a previuos paper, and the information on the relative magnitudes of the effects of individual circuits enable one to predict the stabilities of generalized graphs without performing numerical calculations.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)