Abstract
This paper gives a review of concentration inequalities which are widely
employed in non-asymptotical analyses of mathematical statistics in a wide
range of settings, from distribution-free to distribution-dependent, from
sub-Gaussian to sub-exponential, sub-Gamma, and sub-Weibull random variables,
and from the mean to the maximum concentration. This review provides results in
these settings with some fresh new results. Given the increasing popularity of
high-dimensional data and inference, results in the context of high-dimensional
linear and Poisson regressions are also provided. We aim to illustrate the
concentration inequalities with known constants and to improve existing bounds
with sharper constants.
Users
Please
log in to take part in the discussion (add own reviews or comments).