Аннотация
Missing at random (MAR) and missing completely at random (CAR) are ignobility conditions-when they hold, they guarantee that certain kinds of inferences may be made without recourse to complicated missing-data modeling. In this article we review the definitions of MAR, CAR, and their recent generalizations. We apply the definitions in three common incomplete-data examples, demonstrating by simulation the consequences of departures from ignorability. We argue that practitioners who face potentially nonignorable incomplete data must consider both the mode of inference and the nature of the conditioning when deciding which ignorability condition to invoke.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)