Аннотация
Consider the following model of strong-majority bootstrap percolation on a
graph. Let r be some positive integer, and p in 0,1. Initially, every vertex
is active with probability p, independently from all other vertices. Then, at
every step of the process, each vertex v of degree deg(v) becomes active if at
least (deg(v)+r)/2 of its neighbours are active. Given any arbitrarily small
p>0 and any integer r, we construct a family of d=d(p,r)-regular graphs such
that with high probability all vertices become active in the end. In
particular, the case r=1 answers a question and disproves a conjecture of
Rapaport, Suchan, Todinca, and Verstraete (Algorithmica, 2011).
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)