Please log in to take part in the discussion (add own reviews or comments).
Cite this publication
More citation styles
- please select -
%0 Journal Article
%1 journals/gis/LiFLO19
%A Li, Ziqi
%A Fotheringham, A. Stewart
%A Li, Wenwen
%A Oshan, Taylor
%D 2019
%J Int. J. Geogr. Inf. Sci.
%K dblp
%N 1
%P 155-175
%T Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations.
%U http://dblp.uni-trier.de/db/journals/gis/gis33.html#LiFLO19
%V 33
@article{journals/gis/LiFLO19,
added-at = {2020-05-12T00:00:00.000+0200},
author = {Li, Ziqi and Fotheringham, A. Stewart and Li, Wenwen and Oshan, Taylor},
biburl = {https://www.bibsonomy.org/bibtex/2a5a1dfe0aedac54380120894275e515b/dblp},
ee = {https://doi.org/10.1080/13658816.2018.1521523},
interhash = {82db60ac6d453b12e5c0689060ea85a8},
intrahash = {a5a1dfe0aedac54380120894275e515b},
journal = {Int. J. Geogr. Inf. Sci.},
keywords = {dblp},
number = 1,
pages = {155-175},
timestamp = {2020-05-13T12:00:51.000+0200},
title = {Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations.},
url = {http://dblp.uni-trier.de/db/journals/gis/gis33.html#LiFLO19},
volume = 33,
year = 2019
}