Abstract
High-accuracy Global Navigation Satellite System (GNSS) positioning is a prospective technology that will
be used in future automotive navigation systems. This system will be a composite of the United States'
Global Positioning System (GPS), the Russian Federation's Global Orbiting Navigation Satellite System
(GLONASS), China Beidou Navigation Satellite System (BDS) and the European Union’s Galileo. The
major improvement in accuracy and precision is based on (1) multiband signal transmitting, (2) carrier
phase correction, (3) Real Time Kinematic (RTK). Due to the size and high-cost of today’s survey-grade
antenna solutions, this kind of technology is difficult to use widely in the automotive sector. In this paper, a
low-cost small size dual-band ceramic GNSS patch antenna is presented from design to real sample. A
further study of this patch antenna illustrates the absolute phase center variation measured in an indoor
range to achieve a received signal phase error correction. In addition, this low-cost antenna solution is
investigated when integrated into a standard multi-band automotive antenna product. This product is
evaluated both on its own in an indoor range and on a typical vehicle roof at an outdoor range. By using
this evaluation file to estimate the receiver position could achieve phase motion error-free result.
Users
Please
log in to take part in the discussion (add own reviews or comments).