Abstract
We present results on the formation of Pop III stars at redshift 7.6 from the
Renaissance Simulations, a suite of extremely high-resolution and physics-rich
radiation transport hydrodynamics cosmological adaptive-mesh refinement
simulations of high redshift galaxy formation performed on the Blue Waters
supercomputer. In a survey volume of about 220 comoving Mpc$^3$, we found 14
Pop III galaxies with recent star formation. The surprisingly late formation of
Pop III stars is possible due to two factors: (i) the metal enrichment process
is local and slow, leaving plenty of pristine gas to exist in the vast volume;
and (ii) strong Lyman-Werner radiation from vigorous metal-enriched star
formation in early galaxies suppresses Pop III formation in ("not so") small
primordial halos with mass less than $\sim$ 3 $\times$ 10$^7$ M$_ødot$. We
quantify the properties of these Pop III galaxies and their Pop III star
formation environments. We look for analogues to the recently discovered
luminous Ly $\alpha$ emitter CR7 (Sobral et al. 2015), which has been
interpreted as a Pop III star cluster within or near a metal-enriched star
forming galaxy. We find and discuss a system similar to this in some respects,
however the Pop III star cluster is far less massive and luminous than CR7 is
inferred to be.
Users
Please
log in to take part in the discussion (add own reviews or comments).