Please log in to take part in the discussion (add own reviews or comments).
Cite this publication
More citation styles
- please select -
%0 Conference Paper
%1 conf/ijcai/0002H22
%A Lee, Sangkyun
%A Han, Sungmin
%B IJCAI
%D 2022
%E Raedt, Luc De
%I ijcai.org
%K dblp
%P 3185-3191
%T Libra-CAM: An Activation-Based Attribution Based on the Linear Approximation of Deep Neural Nets and Threshold Calibration.
%U http://dblp.uni-trier.de/db/conf/ijcai/ijcai2022.html#0002H22
%@ 978-1-956792-00-3
@inproceedings{conf/ijcai/0002H22,
added-at = {2022-07-27T00:00:00.000+0200},
author = {Lee, Sangkyun and Han, Sungmin},
biburl = {https://www.bibsonomy.org/bibtex/2bd2454cb4ef6726d58de9f967fbfbaa1/dblp},
booktitle = {IJCAI},
crossref = {conf/ijcai/2022},
editor = {Raedt, Luc De},
ee = {https://doi.org/10.24963/ijcai.2022/442},
interhash = {8f1e33e060f1d6e5124c984e7dfcd875},
intrahash = {bd2454cb4ef6726d58de9f967fbfbaa1},
isbn = {978-1-956792-00-3},
keywords = {dblp},
pages = {3185-3191},
publisher = {ijcai.org},
timestamp = {2024-10-21T07:10:48.000+0200},
title = {Libra-CAM: An Activation-Based Attribution Based on the Linear Approximation of Deep Neural Nets and Threshold Calibration.},
url = {http://dblp.uni-trier.de/db/conf/ijcai/ijcai2022.html#0002H22},
year = 2022
}