Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.
Zitieren Sie diese Publikation
Mehr Zitationsstile
- bitte auswählen -
%0 Conference Paper
%1 conf/arith/GarofaloTCBR21
%A Garofalo, Angelo
%A Tagliavini, Giuseppe
%A Conti, Francesco
%A Benini, Luca
%A Rossi, Davide
%B ARITH
%D 2021
%I IEEE
%K dblp
%P 53
%T XpulpNN: Enabling Energy Efficient and Flexible Inference of Quantized Neural Networks on RISC-V based IoT End Nodes.
%U http://dblp.uni-trier.de/db/conf/arith/arith2021.html#GarofaloTCBR21
%@ 978-1-6654-2293-2
@inproceedings{conf/arith/GarofaloTCBR21,
added-at = {2021-11-23T00:00:00.000+0100},
author = {Garofalo, Angelo and Tagliavini, Giuseppe and Conti, Francesco and Benini, Luca and Rossi, Davide},
biburl = {https://www.bibsonomy.org/bibtex/268845805e156d18ccd2b92849db95af5/dblp},
booktitle = {ARITH},
crossref = {conf/arith/2021},
ee = {https://doi.org/10.1109/ARITH51176.2021.00020},
interhash = {96997ce812786cf097de0f0d89111cb0},
intrahash = {68845805e156d18ccd2b92849db95af5},
isbn = {978-1-6654-2293-2},
keywords = {dblp},
pages = 53,
publisher = {IEEE},
timestamp = {2024-04-09T16:06:58.000+0200},
title = {XpulpNN: Enabling Energy Efficient and Flexible Inference of Quantized Neural Networks on RISC-V based IoT End Nodes.},
url = {http://dblp.uni-trier.de/db/conf/arith/arith2021.html#GarofaloTCBR21},
year = 2021
}