Article,

Indices of cognitive effort in machine translation post-editing

.
Machine Translation, 28 (3-4): 187-216 (2014)
DOI: 10.1007/s10590-014-9156-x

Abstract

Identifying indices of effort in post-editing of machine translation can have a number of applications, including estimating machine translation quality and calculating post-editors' pay rates. Both source-text and machine-output features as well as subjects' traits are investigated here in view of their impact on cognitive effort, which is measured with eye tracking and a subjective scale borrowed from the field of Educational Psychology. Data is analysed with mixed-effects models, and results indicate that the semantics-based automatic evaluation metric Meteor is significantly correlated with all measures of cognitive effort considered. Smaller effects are also observed for source-text linguistic features. Further insight is provided into the role of the source text in post-editing, with results suggesting that consulting the source text is only associated with how cognitively demanding the task is perceived in the case of those with a low level of proficiency in the source language. Subjects' working memory capacity was also taken into account and a relationship with post-editing productivity could be noticed. Scaled-up studies into the construct of working memory capacity and the use of eye tracking in models for quality estimation are suggested as future work.

Tags

Users

  • @coral.diez

Comments and Reviews