,

Learning Correspondence from the Cycle-Consistency of Time

, , и .
(2019)cite arxiv:1903.07593Comment: CVPR 2019 Oral. Project page: http://ajabri.github.io/timecycle.

Аннотация

We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from scratch. At training time, our model learns a feature map representation to be useful for performing cycle-consistent tracking. At test time, we use the acquired representation to find nearest neighbors across space and time. We demonstrate the generalizability of the representation -- without finetuning -- across a range of visual correspondence tasks, including video object segmentation, keypoint tracking, and optical flow. Our approach outperforms previous self-supervised methods and performs competitively with strongly supervised methods.

тэги

Пользователи данного ресурса

  • @dblp
  • @nmatsuk

Комментарии и рецензиипоказать / перейти в невидимый режим

  • @nmatsuk
    6 лет назад
Пожалуйста, войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)