Аннотация
The ICP (iterative closest point) algorithm is the
de facto standard for geometric alignment of
three-dimensional models when an initial relative
pose estimate is available. The basis of ICP is the
search for closest points. Since the development of
ICP, k-d trees have been used to accelerate the
search. This paper presents a novel search
procedure, namely cached k-d trees, exploiting
iterative behavior of the ICP algorithm. It results
in a significant speedup of about 50\% as we show in
an evaluation using different data sets.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)