Article,

Ca -dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of

, , , , and .
Plant Physiology, 143 (1): 28-37 (2007)124ep Times Cited:68 Cited References Count:49.
DOI: 10.1104/pp.106.092643

Abstract

Drought induces stomatal closure, a response that is associated with the activation of plasma membrane anion channels in guard cells, by the phytohormone abscisic acid (ABA). In several species, this response is associated with changes in the cytoplasmic free Ca2+ concentration. In Vicia faba, however, guard cell anion channels activate in a Ca2+-independent manner. Because of potential differences between species, Nicotiana tabacum guard cells were studied in intact plants, with simultaneous recordings of the plasma membrane conductance and the cytoplasmic free Ca2+ concentration. ABA triggered transient rises in cytoplasmic Ca2+ in the majority of the guard cells (14 out of 19). In seven out of 14 guard cells, the change in cytoplasmic free Ca2+ closely matched the activation of anion channels, while the Ca2+ rise was delayed in seven other cells. In the remaining five cells, ABA stimulated anion channels without a change in the cytoplasmic Ca2+ level. Even though ABA could activate anion channels in N. tabacum guard cells independent of a rise in the cytoplasmic Ca2+ concentration, patch clamp experiments showed that anion channels in these cells are stimulated by elevated Ca2+ in an ATP-dependent manner. Guard cells thus seem to have evolved both Ca2+-independent and -dependent ABA signaling pathways. Guard cells of N. tabacum apparently utilize both pathways, while ABA signaling in V. faba seems to be restricted to the Ca2+-independent pathway.

Tags

Users

  • @rainerhedrich_2

Comments and Reviews