Abstract
The results of quantum process tomography on a three-qubit nuclear magnetic
resonance quantum information processor are presented, and shown to be
consistent with a detailed model of the system-plus-apparatus used for the
experiments. The quantum operation studied was the quantum Fourier transform,
which is important in several quantum algorithms and poses a rigorous test for
the precision of our recently-developed strongly modulating control fields. The
results were analyzed in an attempt to decompose the implementation errors into
coherent (overall systematic), incoherent (microscopically deterministic), and
decoherent (microscopically random) components. This analysis yielded a
superoperator consisting of a unitary part that was strongly correlated with
the theoretically expected unitary superoperator of the quantum Fourier
transform, an overall attenuation consistent with decoherence, and a residual
portion that was not completely positive - although complete positivity is
required for any quantum operation. By comparison with the results of computer
simulations, the lack of complete positivity was shown to be largely a
consequence of the incoherent errors during the quantum process tomography
procedure. These simulations further showed that coherent, incoherent, and
decoherent errors can often be identified by their distinctive effects on the
spectrum of the overall superoperator. The gate fidelity of the experimentally
determined superoperator was 0.64, while the correlation coefficient between
experimentally determined superoperator and the simulated superoperator was
0.79; most of the discrepancies with the simulations could be explained by the
cummulative effect of small errors in the single qubit gates.
Users
Please
log in to take part in the discussion (add own reviews or comments).