Abstract
We investigate the effect of confinement on drop formation in microfluidic devices. The presence or absence of drop formation is studied for two immiscible coflowing liquids in a microfluidic channel, where the channel width is considerably larger than the channel height. We show that stability of the inner fluid thread depends on the channel geometry: when the width of the inner fluid is comparable to or larger than the channel height, hydrodynamic instabilities are suppressed, and a stable jet that does not break into drops results; otherwise, the inner fluid breaks into drops, in either a dripping or jetting regime. We present a model that accounts for the data and experimentally exploit this effect of geometric confinement to induce the breakup of a jet at a spatially defined location.
Users
Please
log in to take part in the discussion (add own reviews or comments).