Abstract
Numerous centrality measures have been developed to quantify the importances
of nodes in time-independent networks, and many of them can be expressed as the
leading eigenvector of some matrix. With the increasing availability of network
data that changes in time, it is important to extend such eigenvector-based
centrality measures to time-dependent networks. In this paper, we introduce a
principled generalization of network centrality measures that is valid for any
eigenvector-based centrality. We consider a temporal network with N nodes as a
sequence of T layers that describe the network during different time windows,
and we couple centrality matrices for the layers into a supra-centrality matrix
of size NTxNT whose dominant eigenvector gives the centrality of each node i at
each time t. We refer to this eigenvector and its components as a joint
centrality, as it reflects the importances of both the node i and the time
layer t. We also introduce the concepts of marginal and conditional
centralities, which facilitate the study of centrality trajectories over time.
We find that the strength of coupling between layers is important for
determining multiscale properties of centrality, such as localization phenomena
and the time scale of centrality changes. In the strong-coupling regime, we
derive expressions for time-averaged centralities, which are given by the
zeroth-order terms of a singular perturbation expansion. We also study
first-order terms to obtain first-order-mover scores, which concisely describe
the magnitude of nodes' centrality changes over time. As examples, we apply our
method to three empirical temporal networks: the United States Ph.D. exchange
in mathematics, costarring relationships among top-billed actors during the
Golden Age of Hollywood, and citations of decisions from the United States
Supreme Court.
Users
Please
log in to take part in the discussion (add own reviews or comments).