,

ImageNet Classification with Deep Convolutional Neural Networks

, , и .
Communications of the ACM, 60 (6): 84-90 (мая 2017)
DOI: 10.1145/3065386

Аннотация

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5 percent and 17.0 percent, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3 percent, compared to 26.2 percent achieved by the second-best entry.

тэги

Пользователи данного ресурса

  • @msteininger
  • @peggyschnetter
  • @helenaf

Комментарии и рецензиипоказать / перейти в невидимый режим

  • @peggyschnetter
    @peggyschnetter 4 лет назад
    Quelle für Beschreibung von fully connected layers
Пожалуйста, войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)