A Novel Machine Learning Approach for Predicting Neoadjuvant Chemotherapy Response in Breast Cancer: Integration of Multimodal Radiomics With Clinical and Molecular Subtype Markers.
Пожалуйста, войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)
Цитировать эту публикацию
%0 Journal Article
%1 journals/access/ElGamalSAAASSATEGCE24
%A El-Gamal, Fatma El-Zahraa A.
%A Sharafeldeen, Ahmed
%A Alnaghy, Eman
%A Alghandour, Reham
%A Alghamdi, Norah Saleh
%A Seddik, Khadiga M. A.
%A Shamaa, Sameh
%A Aboueleneen, Amal
%A Tolba, Ahmed Elsaid
%A Elmougy, Samir
%A Ghazal, Mohammed
%A Contractor, Sohail
%A El-Baz, Ayman
%D 2024
%J IEEE Access
%K dblp
%P 104983-105003
%T A Novel Machine Learning Approach for Predicting Neoadjuvant Chemotherapy Response in Breast Cancer: Integration of Multimodal Radiomics With Clinical and Molecular Subtype Markers.
%U http://dblp.uni-trier.de/db/journals/access/access12.html#ElGamalSAAASSATEGCE24
%V 12
@article{journals/access/ElGamalSAAASSATEGCE24,
added-at = {2024-08-22T00:00:00.000+0200},
author = {El-Gamal, Fatma El-Zahraa A. and Sharafeldeen, Ahmed and Alnaghy, Eman and Alghandour, Reham and Alghamdi, Norah Saleh and Seddik, Khadiga M. A. and Shamaa, Sameh and Aboueleneen, Amal and Tolba, Ahmed Elsaid and Elmougy, Samir and Ghazal, Mohammed and Contractor, Sohail and El-Baz, Ayman},
biburl = {https://www.bibsonomy.org/bibtex/2f7d4539e6cf02efaaf2e6dc7e41c9fbe/dblp},
ee = {https://doi.org/10.1109/ACCESS.2024.3432459},
interhash = {fa011f647c2f6aa09a0ba01755199399},
intrahash = {f7d4539e6cf02efaaf2e6dc7e41c9fbe},
journal = {IEEE Access},
keywords = {dblp},
pages = {104983-105003},
timestamp = {2024-08-26T07:06:30.000+0200},
title = {A Novel Machine Learning Approach for Predicting Neoadjuvant Chemotherapy Response in Breast Cancer: Integration of Multimodal Radiomics With Clinical and Molecular Subtype Markers.},
url = {http://dblp.uni-trier.de/db/journals/access/access12.html#ElGamalSAAASSATEGCE24},
volume = 12,
year = 2024
}