In this short note we prove that every maximal torus action on the free
algebra is conjugate to a linear action. This statement is the free algebra
analogue of a classical theorem of A. Białynicki-Birula.
%0 Generic
%1 elishev2018noncommutative
%A Elishev, Andrey
%A Kanel-Belov, Alexei
%A Razavinia, Farrokh
%A Yu, Jie-Tai
%A Zhang, Wenchao
%D 2018
%K Bialynicki-Birula
%T Noncommutative Bialynicki-Birula Theorem
%U http://arxiv.org/abs/1808.04903
%X In this short note we prove that every maximal torus action on the free
algebra is conjugate to a linear action. This statement is the free algebra
analogue of a classical theorem of A. Białynicki-Birula.
@misc{elishev2018noncommutative,
abstract = {In this short note we prove that every maximal torus action on the free
algebra is conjugate to a linear action. This statement is the free algebra
analogue of a classical theorem of A. Bia\l{}ynicki-Birula.},
added-at = {2018-12-05T01:52:31.000+0100},
author = {Elishev, Andrey and Kanel-Belov, Alexei and Razavinia, Farrokh and Yu, Jie-Tai and Zhang, Wenchao},
biburl = {https://www.bibsonomy.org/bibtex/202e3d6b75312b69529cc4de8d1b4736a/taka3617},
description = {Noncommutative Bialynicki-Birula Theorem},
interhash = {7c4f477be93be4288281ea34e4650d3d},
intrahash = {02e3d6b75312b69529cc4de8d1b4736a},
keywords = {Bialynicki-Birula},
note = {cite arxiv:1808.04903Comment: 9 pages},
timestamp = {2018-12-05T01:52:31.000+0100},
title = {Noncommutative Bialynicki-Birula Theorem},
url = {http://arxiv.org/abs/1808.04903},
year = 2018
}