Artikel in einem Konferenzbericht,

WueDevils at SemEval-2022 Task 8: Multilingual News Article Similarity via Pair-Wise Sentence Similarity Matrices

, , , , , und .
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), Seite 1235--1243. Seattle, United States, Association for Computational Linguistics, (Juli 2022)
DOI: 10.18653/v1/2022.semeval-1.175

Zusammenfassung

We present a system that creates pair-wise cosine and arccosine sentence similarity matrices using multilingual sentence embeddings obtained from pre-trained SBERT and Universal Sentence Encoder (USE) models respectively. For each news article sentence, it searches the most similar sentence from the other article and computes an average score. Further, a convolutional neural network calculates a total similarity score for the article pairs on these matrices. Finally, a random forest regressor merges the previous results to a final score that can optionally be extended with a publishing date score.

Tags

Nutzer

  • @albinzehe
  • @hotho
  • @dblp
  • @dmir

Kommentare und Rezensionen