@ad4

How cold is Dark Matter? Constraints from Milky Way Satellites

, and . (2009)cite arxiv:0910.2460 Comment: 5 pages, 5 figures, submitted to MNRAS.

Abstract

We test the luminosity function of Milky Way satellites as a constraint for the nature of Dark Matter particles. We perform dissipationless high-resolution N-body simulations of the evolution of Galaxy-sized halo in the standard Cold Dark Matter (CDM) model and in four Warm Dark Matter (WDM) scenarios, with a different choice for the WDM particle mass (m_w). We then combine the results of the numerical simulations with semi-analytic models for galaxy formation, to infer the properties of the satellite population. Quite surprisingly we find that even WDM models with relatively low m_w values (2-5 keV) are able to reproduce the observed abundance of ultra faint (Mv<-9) dwarf galaxies, as well as the observed relation between Luminosity and mass within 300 pc. Our results suggest a lower limit of 1 keV for thermal warm dark matter, in broad agreement with previous results from other astrophysical observations like Lyman-alpha forest and gravitational lensing.

Description

How cold is Dark Matter? Constraints from Milky Way Satellites

Links and resources

Tags