Successful performance of a sensorimotor task arises from the interaction
of descending commands from the brain with the intrinsic properties
of the lower levels of the sensorimotor system, including the dynamic
mechanical properties of muscle, the natural coordinates of somatosensory
receptors, the interneuronal circuitry of the spinal cord, and computational
noise in these elements. Engineering models of biological motor control
often oversimplify or even ignore these lower levels because they
appear to complicate an already difficult problem. We modeled three
highly simplified control systems that reflect the essential attributes
of the lower levels in three tasks: acquiring a target in the face
of random torque-pulse perturbations, optimizing fusimotor gain for
the same perturbations, and minimizing postural error versus energy
consumption during low- versus high-frequency perturbations. The
emergent properties of the lower levels maintained stability in the
face of feedback delays, resolved redundancy in over-complete systems,
and helped to estimate loads and respond to perturbations. We suggest
a general hierarchical approach to modeling sensorimotor systems,
which better reflects the real control problem faced by the brain,
as a first step toward identifying the actual neurocomputational
steps and their anatomical partitioning in the brain
Es wird ein dreistufiges Modell vorgestellt: Muskeln - Spinal Cord
(Regelkreise) - Brain. Dabei sind nur die Muskeln und der Spinalcord
moduliert. Verschiedene Gains der Neuronen im Spinal Cord erzeugen
unterschiedliches VH in unterschiedlichen Situationen (high oder
low freq pertubation, z.B.). Daraus wird die These abgeleitet, dass
das Redundanzproblem, dass die verschiedenen Trajektorietheorien
(min jerk, etc) lösen durch interne Constraints oder die Anforderungen
der Aufgabe gelöst werden. Für jede Aufgabe ist eine bestimmte Kombination
von Gains unter best. Gesichtspunkten am besten.
%0 Journal Article
%1 Loeb:1999
%A Loeb, G. E.
%A Brown, I. E.
%A Cheng, E. J.
%D 1999
%J Experimental Brain Research
%K Modeling, Motor Muscle Muscles, Neural Reflexes, Spinal control, cord, hierarchical model, networks, spindles,
%P 1-18
%T A hierarchical foundation for models of sensorimotor control
%V 126
%X Successful performance of a sensorimotor task arises from the interaction
of descending commands from the brain with the intrinsic properties
of the lower levels of the sensorimotor system, including the dynamic
mechanical properties of muscle, the natural coordinates of somatosensory
receptors, the interneuronal circuitry of the spinal cord, and computational
noise in these elements. Engineering models of biological motor control
often oversimplify or even ignore these lower levels because they
appear to complicate an already difficult problem. We modeled three
highly simplified control systems that reflect the essential attributes
of the lower levels in three tasks: acquiring a target in the face
of random torque-pulse perturbations, optimizing fusimotor gain for
the same perturbations, and minimizing postural error versus energy
consumption during low- versus high-frequency perturbations. The
emergent properties of the lower levels maintained stability in the
face of feedback delays, resolved redundancy in over-complete systems,
and helped to estimate loads and respond to perturbations. We suggest
a general hierarchical approach to modeling sensorimotor systems,
which better reflects the real control problem faced by the brain,
as a first step toward identifying the actual neurocomputational
steps and their anatomical partitioning in the brain
@article{Loeb:1999,
abstract = {Successful performance of a sensorimotor task arises from the interaction
of descending commands from the brain with the intrinsic properties
of the lower levels of the sensorimotor system, including the dynamic
mechanical properties of muscle, the natural coordinates of somatosensory
receptors, the interneuronal circuitry of the spinal cord, and computational
noise in these elements. Engineering models of biological motor control
often oversimplify or even ignore these lower levels because they
appear to complicate an already difficult problem. We modeled three
highly simplified control systems that reflect the essential attributes
of the lower levels in three tasks: acquiring a target in the face
of random torque-pulse perturbations, optimizing fusimotor gain for
the same perturbations, and minimizing postural error versus energy
consumption during low- versus high-frequency perturbations. The
emergent properties of the lower levels maintained stability in the
face of feedback delays, resolved redundancy in over-complete systems,
and helped to estimate loads and respond to perturbations. We suggest
a general hierarchical approach to modeling sensorimotor systems,
which better reflects the real control problem faced by the brain,
as a first step toward identifying the actual neurocomputational
steps and their anatomical partitioning in the brain},
added-at = {2009-06-26T15:25:19.000+0200},
author = {Loeb, G. E. and Brown, I. E. and Cheng, E. J.},
biburl = {https://www.bibsonomy.org/bibtex/24aa6a54ba3427c5a3629a357ad4509ed/butz},
comment = {Es wird ein dreistufiges Modell vorgestellt: Muskeln - Spinal Cord
(Regelkreise) - Brain. Dabei sind nur die Muskeln und der Spinalcord
moduliert. Verschiedene Gains der Neuronen im Spinal Cord erzeugen
unterschiedliches VH in unterschiedlichen Situationen (high oder
low freq pertubation, z.B.). Daraus wird die These abgeleitet, dass
das Redundanzproblem, dass die verschiedenen Trajektorietheorien
(min jerk, etc) lösen durch interne Constraints oder die Anforderungen
der Aufgabe gelöst werden. Für jede Aufgabe ist eine bestimmte Kombination
von Gains unter best. Gesichtspunkten am besten.},
description = {diverse cognitive systems bib},
interhash = {e9b10fd2b264ddc12e02c5147a0db627},
intrahash = {4aa6a54ba3427c5a3629a357ad4509ed},
journal = {Experimental Brain Research},
keywords = {Modeling, Motor Muscle Muscles, Neural Reflexes, Spinal control, cord, hierarchical model, networks, spindles,},
owner = {martin},
pages = {1-18},
timestamp = {2009-06-26T15:25:45.000+0200},
title = {A hierarchical foundation for models of sensorimotor control},
volume = 126,
year = 1999
}