Abstract

We introduce and study a novel class of sensors whose sensitivity grows exponentially with the size of the device. Remarkably, this drastic enhancement does not rely on any fine-tuning, but is found to be a stable phenomenon immune to local perturbations. Specifically, the physical mechanism behind this striking phenomenon is intimately connected to the anomalous sensitivity to boundary conditions observed in non-Hermitian topological systems. We outline concrete platforms for the practical implementation of these non-Hermitian topological sensors ranging from classical metamaterials to synthetic quantum materials.

Description

Phys. Rev. Lett. 125, 180403 (2020) - Non-Hermitian Topological Sensors

Links and resources

Tags