Abstract

Time is a parameter playing a central role in our most fundamental modelling of natural laws. Relativity theory shows that the comparison of times measured by different clocks depends on their relative motions and on the strength of the gravitational field in which they are embedded. In standard cosmology, the time parameter is the one measured by fundamental clocks, i.e. clocks at rest with respect to the expanding space. This proper time is assumed to flow at a constant rate throughout the whole history of the Universe. We make the alternative hypothesis that the rate at which cosmological time flows depends on the global geometric curvature the Universe. Using a simple one-parameter model for the relation between proper time and curvature, we build a cosmological model that fits the Type Ia Supernovae data (the best cosmological standard candles) without the need for dark energy nor probably exotic dark matter.

Links and resources

Tags